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Abstract. We study multifractal scaling and phase transitions in Scheidegger and Eden
networks in the plane on several lattices. The Horton constantsRB and RL are found not
to depend on the lattice. The scaling exponentα in the integrated area distribution function
P(A > a) ∼ a−α is found to be consistent with the relationα = 1− logRL/ logRB . The
exponentα defines a phase transition point in the multifractal spectrum of the area distribution.
The approach to this phase transition is slow and controlled by lnM, whereM is the number
of lattice points. For the Scheidegger model we are able to calculate the exact probability
distributionp(a) for small areasa and thus to study the finite-size scaling.

1. Introduction

Randomly branched structures appear in nature in a variety of circumstances, including river
networks (Abrahams 1984, Tarbotonet al 1988), the vascular tree of plants and animals
(Suwa and Takahashi 1963, Zamir and Phillips 1988) and the branched patterns in deposition
processes (Matsushitaet al 1985). Ever since the discovery of fractal patterns in the model
of diffusion limited aggregation (DLA) of Witten and Sander (1981) many models have
been proposed and studied (Meakinet al 1991, Inaoka 1993, Kramer and Marder 1992).
Most characterizations of the DLA-clusters have focused on the multifractal properties of
the growth probability distribution (Turkevich and Scher 1985). More recently there has
also been interest in the topology of the cluster, which has been characterized in terms of
Horton’s laws of stream numbers and stream length (Yekutieliet al 1994, Hinrichsenet al
1989).

In draining networks it was observed that the distribution of discharge scales
algebraically and that the exponent is related to the Horton constants (de Vrieset al 1994).
This algebraic scaling is reminiscent of a non-hyperbolic phase in the appropriate measure
and thus should give rise to a phase transition (Bohret al 1988, Procaccia and Zeitak 1988).
Previous work by Nagatani (1993a, b) on Scheidegger models has been inconclusive. We
here study two models where we can identify the phase transition, study the finite-size
scaling and verify a relation between the algebraic scaling and the Horton constants. The
models we use generate compact and self-affine networks; they are the Scheidegger river
network model (Scheidegger 1967) and a kind of Eden model first proposed by Meakin
(1992).

This paper is organized as follows. In section 2 we introduce the models and methods
to characterize their structure. We will give the analytical calculation of the multifractal
spectrum for the area distribution and study its finite-size scaling behaviour. In section 3
we present numerical results on the two models on various lattices. This is followed by a
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calculation of the exact distribution function for the areas of the networks in the Scheidegger
model and an analysis of its asymptotic algebraic decay in section 4. We close this paper
with a summary of the main results and a discussion of open questions.

2. Models and methods

2.1. The Scheidegger and Eden networks

The computer simulation of the Scheidegger model is executed with the following simple
algorithm. Consider a triangular lattice on a semi-infinite cylinder, stretched out in the
plane with periodic lateral boundary conditions. The points on the bottom of the cylinder
are defined as sinks. The network grows layer by layer by connecting points on the next
layer randomly to points in the layer below. This way one obtains a directed network where
every lattice point is connected in a unique way to the bottom of the lattice.

The second model is based on the Eden model (Eden 1960). The simulation starts from
a seed particle in the middle or a seed line at the bottom of the lattice. The cluster grows
by adding of randomly chosen perimeter sites to the cluster. The perimeter is defined as
the set of unoccupied next-neighbour points. After an unoccupied perimeter site has been
added, the direction connecting that site to one of its occupied neighbours is selected at
random. All probabilities involved are uniform and one over the number of unoccupied
sites or neighbours on the network. This way a tree is constructed that connects every site
of the lattice by a unique path with the initial seed site or seed line.

For both models we used three different underlying lattices. The triangular lattice (lattice
A), the square lattice (lattice B) and the square lattice with diagonals (lattice C) (figure 1).
For the simulation of the Scheidegger model on lattices B and C one has to construct the
network row by row from the bottom to the top by randomly choosing all sites of a row
avoiding traps or crossings of paths. Paths which cross also have to be avoided during the
simulation of the Eden model on lattices A and C.

In both models we are able to assign a weighta(i) to every lattice pointi which counts
the number of sites which are connected to the bottom via this site. This weight equals the
area of the corresponding subnetwork which is connected with the bottom through this site.

Examples of the resulting networks on a 100×100 square lattice are shown in figures 2
and 3. The thickness of the lines is proportional to the weight of the lattice points and only
sites with weights greater than 50 are shown. It is apparent that more lattice points exist
with higher weights in the Scheidegger model.

A B C

Figure 1. Different lattices that have been used for generating the Scheidegger and Eden
networks: the triangular lattice (A), the square lattice (B) and the square lattice extended by the
diagonals (C).
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Figure 2. Resulting pattern for the Scheidegger
network model on the square lattice B of size 100×100.
The thickness of the lines is proportional to the weight
of the lattice point. Only sites with weights greater than
50 are shown.

Figure 3. An example of an Eden network on the
square lattice B of size 100×100. The thickness of the
lines is proportional to the weight of the lattice point.
Only sites with weights greater than 50 are shown.

2

2

link of order 2

1

11

stream of order 2

Figure 4. A network of order� = 2 with links labelled by their Strahler order.

Since both models have also been proposed in the context of river networks we will
adopt that nomenclature. Paths will be called streams, starting points will be called sources
and a part of a stream between two junctions or between a source and the next junction will
be called a link. In this context we can also identify the weights as drainage areas.

2.2. Horton’s laws

The topology of branched structures is often characterized in terms of Horton’s law of
stream numbers and stream length. For the measurement of the laws one has to order the
network. We used the Strahler ordering scheme (Strahler 1964) which is defined as follows
(figure 4).

All streams without tributaries are first order. Where two streams of equal orderω join
they terminate and a stream of orderω + 1 begins. Where two streams of different order
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meet the lower-order stream terminates and the higher-order stream continues through the
junction. The stream with the highest order determines the order� of the network.

Horton’s (Horton 1945) law of stream numbers states thatNω, the number of streams
of orderω, decreases geometrically with stream order,

Nω

Nω+1
= RB or Nω = R�−ωB . (1)

RB is called the bifurcation ratio. Horton’s law of stream length holds that the mean length
Lω of streams of orderω increases geometrically with stream order,

Lω

Lω−1
= RL or Lω = L1R

ω−1
L . (2)

L1 denotes the mean length of streams of order 1 andRL is called the length ratio. The
Horton constantsRB andRL determine the topological (similarity) dimensionDt of the
network (La Babera and Rosso 1989, Liu 1992):

Dt = lnRB
lnRL

. (3)

The scale invariance of the self-affine Scheidegger and Eden networks could also be
observed by measuring the distribution of the weights of the lattice points. The integrated
distribution functionP(A > a) will asymptotically decrease according to a power law

P(A > a) ∼ a−α. (4)

For the Scheidegger model on the triangular lattice, the exponentα can be calculated from
the critical properties of a one-dimensional random walk and equals1

3 (Kondohet al 1987,
Takayasuet al 1988) (cf section 4).

Under the assumption that all links of the network occupy in the mean the same area
one can relate the topological dimensionDt to the exponentα, namely (de Vrieset al 1994)

α = 1− 1

Dt

= 1− lnRL
lnRB

. (5)

In the case of the self-similar trees introduced by Mandelbrot (1983) one can obtain this by
a direct calculation (de Vries and Eckhardt 1996).

The value ofα is also determined by the values ofν⊥ andν‖ which describe the scaling
of the widthW and the lengthL of the network with the areaA,

W ∼ Aν⊥ (6)

L ∼ Aν‖ . (7)

For a self-affine networkν⊥ differs from ν‖. Since for compact networks the areaA is
proportional toWL we have

ν⊥ + ν‖ = 1. (8)

Furthermore, in this case we have the relation (Matsushita and Meakin 1988)

α = ν⊥. (9)
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2.3. Multifractal scaling

Another interesting property to study is the multifractal structure of the drainage area
distribution or equally the distribution of the weightsa(i) (Nagatani 1993a). Consider
a network on a finite lattice ofN ×N points. To avoid finite-size effects we will only take
into account lattice points with weights less thanM whereM is of the order ofN . Let ai
be the weight of lattice pointi. We introduce the partition functionZM(q) as the sum over
all weightsai 6 M raised to the power ofq (Nagatani 1993a),

ZM(q) =
∑
ai6M

a
q

i . (10)

With m(a), the number of sites with weighta, we rewrite the partition function as

ZM(q) =
M∑
a=1

m(a)aq. (11)

In analogy to statistical thermodynamics one can define a ‘free energy’FM(q),

FM(q) = − lnZM(q)

lnM
. (12)

Phase transitions will be identified as non-analycities in theq-dependence of the free energy
FM(q) (Katzen and Procaccia 1987, Bohret al 1988). In the case of an algebraic decay
of m(a) ∼ a−α−1 the free energyFM(q) shows a first-order phase transition in the limit of
M →∞ at q = α. We will show this with the help of the ‘specific heat’

CM(q) = ∂2

∂q2
FM(q) (13)

which will develop a singularity at this point. With these assumptions,

CM(q) = − 1

lnM

∂2

∂q2

(
ln

M∑
a=1

aq−α−1

)
. (14)

CM(q) is a single humped function which converges to a delta function atq = α in
the limit M → ∞. Within the numerical simulationsCM(q) is calculated with the help
of equations (13) and (10). Figure 6(a) shows some examples ofCM(q) for M for the
Scheidegger model on the triangular lattice forM = 500, 1000, 2000, 4000. One can
already see that the convergence is only logarithmic since the differences between successive
minima are constant.

The finite-size scaling behaviour of the specific heatCM(q) is also accessible. Replacing
the sum

∑M
a=1 a

q−α−1 by an integral gives

CM(q) = lnM

(
Mq−α

(Mq−α − 1)2
− 1

((q − α) lnM)2

)
. (15)

With the new variable

y = (q − α) lnM (16)

the specific heat becomes

CM(q) = ln(M)g(y) (17)

with the scaling function

g(y) = ey

(ey − 1)2
− 1

y2
. (18)

This shows that for differentM the functionsCM(q) in (15) can be mapped onto the function
g(y) by rescaling the axes. The convergence to the limiting function is only logarithmic in
the parameterM characterizing the system size.
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Figure 5. Horton diagrams and area distribution for
an Eden network on a 3000×3000 square lattice. The
diagrams show the distribution of (a) stream numbers,
(b) stream length and (c) integrated area distribution.
The regions in which the scaling exponents were
fitted are indicated by full lines while the dotted lines
indicate the extension over the full range.

3. Numerical results

For the measurement of the Horton constantsRB andRL we generated for every lattice
type 10 networks of size 3000× 3000. Figures 5(a) and (b) show the Horton diagrams for
an Eden network on a 3000× 3000 square lattice. On this lattice there are many streams,
the largest of which has an order of about 11 (this is the typical value; in a few realizations
a maximal order 12 was observed). To increase the maximal order� by 1 requires roughly
doubling the lattice size. In both networks streams of order one do not fit the Horton laws
very well; they are too numerous and too long. This is also observed in DLA clusters and
river networks (Yekutieliet al 1994, Abrahams 1984). To avoid influences from large and
small streams we measured the Horton constantsRB andRL between order 2 and 5 only.
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Table 1. Horton constants and the exponentsα for the Scheidegger and Eden networks. The
measured values in columns 3–5 represent averages over 10 networks of size 3000×3000. αexp

was determined by a fit according to equation (4).

Model Lattice Measuredαexp RL RB α from equation (5)

Scheidegger A 0.336± 0.004 2.94± 0.02 5.12± 0.02 0.339± 0.007
Scheidegger B 0.334± 0.003 2.95± 0.01 5.11± 0.02 0.336± 0.005
Scheidegger C 0.335± 0.004 2.95± 0.02 5.15± 0.03 0.34± 0.01
Eden A 0.398± 0.004 2.70± 0.02 5.15± 0.02 0.394± 0.008
Eden B 0.396± 0.004 2.69± 0.02 5.13± 0.02 0.395± 0.009
Eden C 0.400± 0.004 2.69± 0.02 5.14± 0.02 0.395± 0.009

For every network we also measured the integrated distribution functionP(A > a) (see
figure 5(c) for an Eden network). It decays algebraically with an exponentα over several
decades.

The results of our measurements are collected in table 1. Within the standard error
the observable are independent of the underlying lattice. For the bifurcation ratioRB we
measured a value of about 5.15 for both network types, which has also been observed for
DLA clusters (Yekutieliet al 1994, Hinrichsenet al 1989). The value ofRL ≈ 2.69 for
the Eden networks is lower than the one for the Scheidegger networks (RL ≈ 2.95) since in
the former there are more possibilities for the branches to join (compare also figures 2 and
3). The measured values forα according to equation (4) are about 0.33 for the Scheidegger
networks and about 0.40 for the Eden networks; they are in good agreement with (5). As
far as the scaling exponentα ≈ 0.40 is concerned the Eden model falls into the universality
class of several other network models (Meakin 1987, Meakinet al 1991, Leheny 1995,
Manna and Subramanian 1996).

In order to measureα with the help of the multifractal distribution of the weights
we generated five networks of size 4000× 4000 with the Scheidegger model on the
square lattice and take into account all lattice points with weights less than or equal
to M = 500, 1000, 2000, 4000. The specific heatCM(q) calculated with the help of
equation (13) and (10) is shown in figure 6(a). The data points were calculated in steps
of 1q = 0.01. One can already see that the absolute value of the minimum ofCM(q)

increases with lnM since the differences of the minima between successive curves are
constant. A measurement of the mean position of the minimum value ofCM(q) leads to
estimates ofα = 0.343, 0.338, 0.335, 0.333 with an uncertainty of 1 in the last digit for
M = 500, 1000, 2000, 4000 respectively. The uncertainty of the whole function is less than
1%. Figure 6(b) shows the rescaled spectra out of figure 6(a) together with the scaling
function g(y). The rescaling was done with a value ofα = 1

3 for all spectra. The rescaled
spectra coincide very well which proves the logarithmic convergence towards the delta
function. The difference to the scaling functiong(y) is mainly caused by the fact that we
used an integral approximation for its calculation. The rescaling of a discrete summation is
indistinguishable from the results for the networks.

4. Analytical results for the Scheidegger model

In this section we want to calculate the exact values of the area distributionp(a) for the
Scheidegger model on the triangular lattice for small areasa. As already mentioned, the
asymptotic value ofα = 1

3 can be calculated from the critical properties of a simple random
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(b) Figure 6. Specific heatsCM(q) for the Scheidegger
models on a triangular lattice for different sizesM.
(a) Unscaled data and (b) rescaled using (15) and
(16) with α = 1

3 .

walk (Kondohet al 1987, Takayasuet al 1988). Since the critical properties of directed
random walks on lattice B and C are the same (Redner and Majid 1983) the asymptotic
value ofα should also equal13. This is supported by our numerical results.

For the triangular lattice the boundary of a network is equivalent to the traces of a
pair of random walkerss and r who start at a distance 1 apart and join together for the
first time at the top of the network (figure 7). The distancex := r − s between the two
random walkers obeys the equations for a random walk that starts at timet = 0 at position
1 and changes in the next time step to 1± 1 with probability 1

4 and keeps its position with
probability 1

2 (figure 8). The walk stops whenx = 0 is reached (the two walkers meet
again).

Let w(t) = (w1, . . . , wi, . . .) be the vector of probabilities for the random walker
to reach sitei at time t . Then the probabilities in the next time step are given by
w(t + 1) = Tw(t) with the transfer matrix

T =


1
2

1
4 0 0 0 · · ·

1
4

1
2

1
4 0 0 · · ·

0 1
4

1
2

1
4 0 · · ·

...
. . .

. . .
. . .

. . .

 and w(0) =


1
0
0
...

 . (19)

In order to keep track of the area enclosed by the random walker we introduce a book
keeping variablez, so that its power counts the enclosed are. The entries of the vector
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Figure 7. Area relations in the Scheidegger model. The total area drained by a network is
bounded by the dotted lines. The enclosed area can be estimated from random walks that start
one lattice site apart and meet again for the first time at the top of the network.
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Figure 8. Random walks, enclosed areas and generating functions for the Scheidegger model.
See text for a further explanation.

w′(t) will now be polynomials inz and the transfer matrix is modified to

T′ =


1
2z

1
4z 0 0 0 · · ·

1
4z

2 1
2z

2 1
4z

2 0 0 · · ·
0 1

4z
3 1

2z
3 1

4z
3 0 · · ·

...
. . .

. . .
. . .

. . .

 . (20)

Consider, as an example, the first few steps indicated in figure 8. The random walker
starts at a distance 1, carrying a single site as weight. Thusw′(0) = (z, 0, . . .). After the
first iterationw′(1) = ( 1

2z
2, 1

4z
3, 0, . . .). This accounts for the two possibilities: ‘staying

at a site and adding area 1’ and ‘moving one up and adding area 2’. After the second
iteration,w′(2) = ( 1

4z
3 + 1

16z
4, 1

8z
4 + 1

8z
5, 1

16z
6, . . .). The entries ati = 1 now contain the

contributions from the paths that stayed ati = 1 and accumulated an area of 3 and the
one that stepped out and back, accumulating an area 4. The probabilities we are interested
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Table 2. Results of the calculation of the exact probabilitiesp(a) together with the values of
the locally definedα(a).

a p(a) α(a)

1 1
4 0.263 03

2 1
8 0.259 85

3 1
16 0.302 46

4 3
64 0.280 18

5 1
32 0.318 71

6 7
256 0.297 82

7 21
1024 0.316 54

8 37
2048 0.312 80

9 31
2048 0.316 92

10 217
16 384

19 376 401
67 108 864 0.325 15

20 704 727
134 217 728

29 219 605 077
68 719 476 736 0.327 71

30 3359 578 083
1099 511 627 776

in are contained in the first elementi = 1, the probabilities for a certain area being the
coefficient of the corresponding power inz.

To get the desired probabilitiesp(a) we have to sum up all coefficients of the
polynomials in the first element of the vectorsw′(k), k = 0, . . . , a, with a degree equal to
a and multiply the final sum with1

4 realizing the die out of the networks. A transfer matrix
of sizeN ×N yields the probabilitiesp(a) up to a = N2.

We calculated thep(a) up to a = 36 with the help of MAPLE and studied the
convergence of the locally definedα(a)

α(a) := logp(a)− logp(a + 1)

log(a + 1)− log(a)
− 1 (21)

towards the exact value of1
3 (table 2). Fora > 23 theα(a) converge monotonically towards

the limiting value of 1
3. The value ofα(35) is already less than 2% away from this value.

As shown in figure 9(a) the differences between theα(a) and the limit value of13 decay like
1
3−α(a) ∼ a−1. Assuming this convergence we can estimate the limit valueα∞ from pairs
α(a), α(a + 1) (figure 9(b)). This also converges to13, supporting the scaling hypothesis.

5. Final remarks

The Scheidegger and Eden model belong to different universality classes as far as the scaling
exponentα is concerned. But this difference seems to be due to a difference in the Horton
constantRL only.

For the multifractal spectrum of the area distribution we could show the existence
of a phase transition point in the limit ofM → ∞ whereM stands for the system
size. The transition point is defined by the exponentα in the integrated area distribution
P(Q > q) ∼ q−α. The approach to the phase transition for finiteM is very slow and
controlled by lnM.
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Figure 9. Finite-size scaling for the exponentα in
Scheidegger networks. (a) The differences1

3 − α(a)
scale likea−1. (b) Assuming the above scaling, the
locally estimated asymptotic valuesα∞ also approach
1
3.

In a stimulating recent contribution, Manna and Dhar (1996) related exponents in the
Eden model to exponents in the Kardar, Parisi, Zhang equation for the growth of interfaces
(Kardar et al 1986, Halphin-Healy and Zhang 1995). In particular, the lengthL of the
network and the corresponding widthW should scale likeW ∼ L2/3. From the definition
of ν⊥ and ν‖ in (6) and (7) it follows thatW ∼ Lν⊥/ν‖ . Since the networks are compact,
ν⊥ + ν‖ = 1 and thusν⊥ = 2

5. Using (9) and (5) we findα = 2
5 andDt = 5

3. Perhaps the
analysis presented here can shed light on the universality classes and finite-size scaling for
interface growths as well.
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